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DNA Replication in Yeast

Carol S. Newlon
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The details of chromosome replication are better understood in the bud-
ding yeast, Saccharomyces cerevisiae, than in any other eukaryotic
organism. cis-Acting replicator sequences required for chromosomal
replication origin function were identified on the basis of their ability to
promote the extrachromosomal maintenance of plasmids. These
autonomously replicating sequence (ARS) elements have been dissected
using the plasmid assay. The ease with which chromosomal sequences
can be replaced by homologous recombination in this yeast has facili-
tated analysis of the effects of ARS mutations on chromosomal origin ac-
tivity, which can be assayed by two-dimensional (2D) gel analysis. Both
the isolation and analysis of mutants defective in DNA replication and
the use of reverse genetics to identify and mutate genes encoding
proteins thought to participate in DNA replication have yielded insights
into proteins required for the initiation and elongation steps of DNA
replication.

The fission yeast, Schizosaccharomyces pombe, offers many of the
same advantages for the study of chromosomal DNA replication as S.
cerevisiae. A similar plasmid assay has been used to identify ARS ele-
ments that appear to be associated with chromosomal replication origins.
The sequences required for ARS activity in the plasmid assay have not
been dissected thoroughly, but preliminary indications suggest that S.
pombe ARS elements, like S. pombe centromeres, are larger than those of
S. cerevisiae. In addition, the genes encoding a number of S. pombe
replication proteins have been isolated and characterized.

Despite the enormous progress in characterizing the replicators and
proteins required for yeast chromosomal DNA replication, there is still
not an in vitro DNA replication system that depends on bona fide
replicators for the initiation of replication. The SV40 in vitro replication
system has partially filled the gap caused by the lack of a yeast in vitro
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system. As required proteins have been identified in the SV40 system,
yeast structural and functional homologs have been identified and the
genes encoding them have been cloned. The construction and analysis of
mutations in the yeast genes has allowed assessment of the in vivo roles
of these proteins.

PROTEINS AT THE REPLICATION FORK

The biochemical properties and structural features of yeast proteins that
function at the replication fork and are highly homologous to proteins in
other eukaryotes are covered in the section on replication proteins. New
insights about the roles of these proteins in DNA metabolism, gained
largely through the analysis of conditional mutations in the genes encod-
ing these enzymes in S. cerevisiae, are emphasized in this section. Table
1 provides a list of S. cerevisiae proteins implicated to function at the
replication fork.

DNA Polymerases

A major contribution of the yeast system was the unexpected finding that
three DNA polymerases, pol-a, pol-8, and pol-g, are all essential for life.
Much ongoing research is directed at understanding the essential role(s)
of each of these polymerases.

pol-a, which contains an intrinsic primase activity, is required for the
initiation of both leading-strand and lagging-strand synthesis in the SV40
in vitro system. This polymerase is thought to synthesize the RNA
primer for both the leading and lagging strands and to extend the RNA
primer by synthesizing a short initiator DNA (Waga and Stillman 1994).
As has been found for other pol-a:primase enzymes, S. cerevisiae DNA
primase activity copurifies with the tightly associated 58-kD and 48-kD
subunit complex, which can be separated from the two larger subunits.
Although it has not been possible to separate it in active form from the
heterodimeric complex with the 58-kD subunit, free 48-kD subunit pres-
ent in yeast extracts is capable of RNA primer synthesis (Santocanale et
al. 1993). Consistent with this observation, the properties of pol-a im-
munopurified from strains carrying ts mutations in PRII or PRI2 suggest
that the 48-kD subunit has a major role in primase activity. The same im-
munopurification experiments suggest that the 58-kD subunit mediates or
stabilizes the interaction of the 48-kD subunit with the four-subunit pol-
o complex (see Table 1).

DNA polymerase activity is associated with the 167-kD subunit of
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pol-a. Some ts mutations in the gene encoding this subunit cause an im-
mediate cessation of DNA synthesis at the nonpermissive temperature,
suggesting that other DNA polymerases cannot continue synthesis in the
absence of pol-a. This "quick-stop" phenotype may reflect strong cou-
pling between the activities of replicative polymerases. Alternatively,
these mutations may, at the nonpermissive temperature, cause a con-
formation change in, or instability of, pol-a that causes the replication
fork to fall apart. The gene encoding the catalytic subunit of S. pombe
pol-a has been cloned and sequenced (Damagnez et al. 1991; Park et al.
1993) and shows substantial similarity to pol-o subunits from other
organisms (see Wang, this volume).

No enzymatic activity has been associated with the fourth subunit of
pol-a, encoded by the POL12 gene of S. cerevisiae. This subunit appears
to mediate the interaction of pol-a:primase with T antigen in the SV40 in
vitro system, suggesting a possible role in the initiation of both leading
and lagging strands (Collins et al. 1993). The characterization of a strain
carrying a ts mutation in POLI2 has revealed that this subunit plays an
essential role in an initial stage of DNA replication that is complete be-
fore the hydroxyurea-sensitive step, presumably chain elongation (Foiani
et al. 1994). This subunit shows a cell-cycle-regulated phosphorylation,
becoming dephosphorylated as cells complete mitosis and rephosphory-
lated at the G¢/S boundary (Foiani et al. 1995). The ts mutant phenotype
and the cell-cycle-dependent phosphorylation pattern suggest a
regulatory role for this subunit. A speculative model is that the non-
phosphorylated form of this subunit is required for loading pol-a:primase
at replication origins by direct or indirect interactions with the origin
recognition complex (Foiani et al. 1994).

Additional proteins that interact with the pol-a catalytic subunit have
been sought by protein affinity chromatography. Six polypeptides were
identified that bound to a matrix carrying immobilized pol-a but not to a
control matrix (Miles and Formosa 1992a). One of these polypeptides,
called POB1 (for polymerase one binding), is encoded by a gene that was
identified in a screen for mutants that cause an increased rate of mitotic
loss of chromosome III, CTF4/CHL15 (Table 1) (Kouprina et al. 1992;
Miles and Formosa 1992b). Although CTF4 is not essential, null mutants
have phenotypes suggesting a role in DNA metabolism. These
phenotypes include elevated rates of chromosome loss and genetic
recombination, enhanced temperature sensitivity of strains carrying
mutations in the pol-a catalytic subunit, and accumulation in the popula-
tion of cells with large buds and undivided nuclei. The other five pol-a-
binding polypeptides have not been characterized further.
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The other two essential DNA polymerases differ from pol-a in
several ways. Both pol-d and pol-¢ have intrinsic "proofreading” 3’ —5"
exonuclease activities, the processivity of both polymerases is stimulated
by PCNA, and neither has DNA primase activity. pol-8 appears to be a
two-subunit enzyme (Table 1), but the gene encoding the smaller subunit
has not been cloned, and little is known of its function. The S. pombe
gene encoding the catalytic subunit of pol-8 has been cloned and se-
quenced (Pignede et al. 1991; Park et al. 1993). Purified pol-¢ has five
subunits (Table 1); the two largest subunits are encoded by essential
genes. The third and fourth subunits are encoded by a single nonessential
gene. These two subunits may represent different posttranslational modi-
fications of the primary gene product, or one may be a proteolytic
degradation product of the other. The gene encoding the smallest subunit
has not been identified.

A critical, as yet unanswered, question is what is the essential, non-
overlapping function of each of these PCNA-dependent polymerases.
One possibility is that both polymerases function as part of the replica-
tion fork, one responsible for leading-strand synthesis and the second
responsible for completing Okazaki fragments on the lagging strand.
Consistent with this idea, strains carrying some ts mutations in the
catalytic subunit of pol-g exhibit a "quick stop” elongation defect when
shifted to the nonpermissive temperature, and under some conditions ts
mutations in the catalytic subunit of pol-d cause a similar defect (Budd
and Campbell 1993). However, pol-d is clearly able to complete both
leading- and lagging-strand replication in the SV40 system (Waga and
Stillman 1994). A second possibility is that pol-e plays an essential role
in DNA repair, perhaps in correcting errors made by the replicative
polymerase. Consistent with a role for pol-¢ in repair, extracts prepared
from pol2 mutants are inactive in base excision repair synthesis in vitro
(Wang et al. 1993). However, either pol-8 or pol-¢ is sufficient for the in
vivo repair of UV damage (Budd and Campbell 1995b).

Whatever the essential role(s) of its catalytic activity, the catalytic
subunit of pol-¢ also has been implicated strongly as a component of the
cell-cycle checkpoint that prevents entry into mitosis in the presence of
incompletely replicated or damaged DNA, the S-phase checkpoint
(Navas et al. 1995). Mutations causing defects in this checkpoint map to
the carboxyl terminus of the protein, in a domain distinct from the
catalytic domain. The checkpoint-defective mutants are temperature-
sensitive for growth and have defects in DNA replication, suggesting that
the carboxyl terminus is also required for DNA synthesis. It has been
proposed that the role of pol-¢ in the checkpoint is to act as a sensor of
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DNA replication that coordinates the transcriptional and cell-cycle
responses to replication blocks.

Proliferating Cell Nuclear Antigen

PCNA, encoded by the essential POL30 gene of S. cerevisiae (Table 1)
and the pcnl* gene of S. pombe (Waseem et al. 1992), is a processivity
factor for both pol-d and pol-¢ (see Table 1). Although PCNA shows no
amino acid sequence similarity to the p subunit of Escherichia coli DNA
polymerase III, and is a homotrimer rather than a homodimer, the crystal
structures of these two proteins are strikingly similar. The trimer is a
ring-shaped complex with a central hole large enough to accommodate a
DNA duplex. These proteins, along with the bacteriophage T4 gene 45
protein, thus function as sliding clamps that anchor their interacting
polymerases to DNA (for review, see Stillman 1994). These sliding
clamps normaily require assistance from additional factors for loading
onto DNA, which likely requires opening of the ring. Both biochemical
and genetic analysis implicates replication factor C (RF-C) as the protein
required to load PCNA (for review, see Krishna et al. 1994). The genetic
evidence is that mutations in POL30 suppress the phenotype of ts muta-
tions in the gene encoding the large subunit of RF-C, CDC44 (McAlear
et al. 1994; Ayyagari et al. 1995). These mutations change amino acids
that lie throughout the entire protein and fail to identify a small domain
of interaction between PCNA and RF-C. The suppression of phenotypes
resulting from defective RF-C complexes by these PCNA mutations is
likely to result from weakened interactions between PCNA subunits that
make the circular clamp easier to open for loading onto DNA.

PCNA also interacts with proteins that are not part of the replication
apparatus. The human cyclin-dependent protein kinase inhibitor, p21,
binds to PCNA and inhibits its DNA replication functions but not its
DNA repair functions (Flores-Rozas et al. 1994; Li et al. 1994; Waga et
al. 1994). The identification of mutant derivatives of PCNA that support
normal growth rates and interact normally with RF-C and pol-8 and pol-
¢, but show defects in one or more DNA repair processes, strongly sug-
gests that PCNA interacts with repair-specific protein(s) (Ayyagari et al.
1995).

RF-C
Like the bacteriophage T4 accessory protein complex gp44/gp62 and the
E. coli yt complex, RF-C appears to bind to primer/template structures
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and load the ring-shaped sliding clamp, PCNA. The five RF-C subunits
show considerable amino acid sequence similarity, including a putative
purine nucleotide-binding region (see Table 1 for references). Moreover,
the five RF-C subunits show significant homology with the functionally
related proteins of bacteriophage T4 (gp44) and E. coli (the yt subunits
of the DNA polymerase III holoenzyme), and the large subunit, encoded
by the RFCI gene, contains a region of significant homology with
prokaryotic DNA ligases and poly(ADP-ribose)-polymerases of
eukaryotes (Cullmann et al. 1995). It is not clear whether all five sub-
units of RF-C associate in a single complex, or whether several com-
plexes with different subunit compositions act in different aspects of
DNA replication or repair. Another unresolved issue is what is (are) the
specific function(s) of each RF-C subunit. Finally, the observation that
loss of the CHL12 gene product, which shows significant homology with
subunits of RF-C, results in a cold-sensitive phenotype consistent with a
leaky defect in DNA replication raises the possibility that additional RF-
C-like proteins function in some aspect of DNA replication (Kouprina et
al. 1994).

Replication Protein A

RP-A is a heterotrimeric single-stranded DNA-binding protein required
for DNA replication, recombination, and repair (see Table 1). It appears
to be the functional analog of T4 gene 32 protein and E. coli SSB. Al-
though each of the three subunits is encoded by an essential gene, the ac-
tivities of the subunits are poorly understood. The large subunit is
capable of binding DNA independently of the other two subunits (Brill
and Stillman 1989), and specific mutant alleles of RPAI implicate this
subunit in interactions with recombination and repair enzymes
(Firmenich et al. 1995; Smith and Rothstein 1995). The 34-kD subunit is
phosphorylated in a cell-cycle-dependent manner (Din et al. 1990), sug-
gesting a regulatory activity. The inability of yeast RP-A to efficiently
substitute for human RP-A in the complete SV40 replication system sug-
gests that RP-A makes specific protein contacts with one or more sub-
units of the replication complex (Brill and Stillman 1989).

Topoisomerases

The unwinding of DNA in advance of replication forks introduces posi-
tive supercoils, which must be removed by a swivel. The phenotypes of
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topoisomerase mutants suggest that either a type I or a type II topoisom-
erase can provide the essential function (see Table 1). The observation
that top! mutants of S. cerevisiae transiently accumulate relatively short
daughter strands during DNA replication suggests that topoisomerase |
normally provides the replication swivel (Kim and Wang 1989).

A second topological problem resulting from DNA replication occurs
near the end of the elongation step, when replication forks converge. The
sister duplexes either end up as a pair of catenated helices that must be
resolved by a type II topoisomerase, or as a pair of gapped molecules that
can be resolved by either a type I or a type II topoisomerase (for review,
see Wang 1991). Recent analysis of a fop3 mutant of budding yeast, defi-
cient in a type I topoisomerase, and an extragenic suppressor of the
mutant, sgs/, which encodes a putative helicase, is consistent with the
notion that this pair of gene products has a role in the resolution of
daughter helices following the completion of replication (Gangloff et al.
1994).

In both fission and budding yeast, the essential function of topoisom-
erase II appears to be in the untangling of sister chromatids at mitosis,
where it plays a role in resolving tangles during both chromosome con-
densation and segregation (Holm et al. 1985, 1989; Uemura and Yana-
gida 1986; Funabiki et al. 1993; Spell and Holm 1994). It is interesting
that Sgslp also interacts with topo II, and that sgsI null mutants have a
chromosome segregation defect, implicating this putative helicase in
chromosome segregation as well as in the completion of DNA replicons
(Watt et al. 1995).

Other Proteins

Several other proteins, including an enzyme that removes RNA primers,
a DNA polymerase to fill in the gaps left by removal of primers, a DNA
ligase to close single-strand nicks, and one or more helicases to drive
movement of the replication fork, have a role at the replication fork. In E.
coli, the 5’ —3' exonuclease activity of DNA polymerase I appears to
remove the RNA primers attached to the 5’ ends of newly replicated
DNA (Konrad and Lehman 1974). In the SV40 in vitro system, both an
RNase H and a 45-kD 5’-=3’ exonuclease, probably the FEN-1
nuclease, are required for primer removal (Ishimi et al. 1988; Goulian et
al. 1990; Turchi and Bambara 1993; Turchi et al. 1994). Deletion of the
yeast homolog of FEN-1 nuclease, encoded by the YKL510 gene, causes
phenotypes consistent with defects in both DNA replication and DNA
repair (Table 1). The observation that ykI510 null mutations cause
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temperature-sensitive lethality suggests that another protein can sub-
stitute for the YKL510 gene product at 30°C but not at 37°C.

The genes encoding DNA ligase, CDC9 of S. cerevisiae and cdcl7*
of S. pombe, were among the first cell-cycle genes to be associated with
a protein product (Nasmyth 1977; Johnston and Nasmyth 1978). The
yeast DNA ligases show significant homology with each other and with
human DNA ligase 1 (Barker et al. 1987) and also have catalytic
properties very similar to the mammalian DNA ligase I enzyme (Tomp-
kinson et al. 1992). Temperature-sensitive DNA ligase mutants are
defective in DNA replication, failing to join Okazaki fragments and com-
pleted replicons (Johnston and Nasmyth 1978; Johnston 1983), and are
also defective in DNA repair and mitotic recombination (for review, see
Johnston 1983). No activities corresponding to mammalian DNA ligases
II and IIT have been reported in yeast.

A strong candidate for a replicative helicase has recently been identi-
fied as the product of the DNA2 gene (Table 1) (Budd and Campbell
1995a). This protein has both a DNA-stimulated ATPase activity and
3r—5' helicase activity that depends on the ATPase. Interestingly, it
copurifies with a nuclease that shows a substrate specificity similar to the
nuclease encoded by the YKL570 gene, and the temperature sensitivity of
the dna2 mutant is suppressed by a high-copy-number plasmid carrying
YKLS510, suggesting that the copurification may reflect a physiologically
significant interaction between these two proteins. A number of other
helicases have been identified in yeast, but their specific roles in DNA
replication have not yet been identified (Li et al. 1992; Bean et al. 1993;
Shimizu and Sugino 1993).

ORIGINS OF REPLICATION

It has been possible to define chromosomal origins of replication more
precisely in yeasts than in any other eukaryotic organism. The replicator
sequences necessary for replication origin activity were identified by
their ability to promote the extrachromosomal maintenance of plasmids
in S. cerevisiae and called autonomously replicating sequence (ARS) ele-
ments (for review, see Campbell and Newlon 1991). S. pombe sequences
with similar properties were identified soon thereafter (Beach and Nurse
1981). The development of 2D gel methods for the analysis of replication
intermediates made it possible to demonstrate that replication origins
coincide with ARS elements in plasmids (Brewer and Fangman 1987;
Huberman et al. 1987) and in chromosomes (for review, see Newlon and
Theis 1993).
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ARS Structure

Our current view of ARS structure, gained from the detailed analysis of a
small number of ARS elements, is summarized in Figure 1. An essential
region of approximately 17 bp, called domain A, contains a match to an
11-bp sequence (5'-[A/T]TTTA[T/C][A/G]TTT[A/T]-3"), the ARS
consensus sequence (ACS). This ACS serves as a point of reference for
other essential or stimulatory sequences, with domain B on the 3’ side of
the T-rich strand of the ACS and domain C on the 5’ side. Deletion anal-
ysis has revealed that the minimal sequences required for ARS activity,
defined by the ability to promote high-frequency transformation and ex-
trachromosomal maintenance of plasmids, include domain A and a vari-
able number of nucleotides in domain B. Additional sequences in domain
B, and sometimes in domain C, increase the efficiency of ARS function,
measured by plasmid stability assays.

The ACS is the only highly conserved DNA sequence in ARS ele-
ments, and the sequence conservation reflects its functional significance.
Point mutations in the ACS either abolish or reduce ARS activity (Van
Houten and Newlon 1990; Rivier and Rine 1992; Li and Herskowitz
1993). Although ARS elements almost always contain multiple matches
to the ACS, usually a single ACS is essential, with mutations in the other
matches having little or no effect on ARS activity (Marahrens and
Stillman 1992; Huang and Kowalski 1993; Miller and Kowalski 1993;
Shirahige et al. 1993; Rao et al. 1994; Theis and Newlon 1994). How-
ever, in 3 of the 21 ARS elements studied, either of 2 overlapping or
closely spaced ACSs can provide the essential function (Van Houten and
Newlon 1990; Shirahige et al. 1993; J.F. Theis and C.S. Newlon, in
prep.). In about half of the ARS elements studied, the essential ACS is an
exact match to the consensus; most others match at 10 of 11 positions
(for review, see Newlon and Theis 1993). The extreme cases are ARS72]
and ARS309, which have essential 9 of 11 matches to the ACS (Walker
et al. 1990; J.F. Theis and C.S. Newlon, in prep.). Domain A is the core
of the recognition region of a multiprotein complex, origin recognition
complex (ORC) (see below).

In contrast to domain A, there is no highly conserved DNA sequence
within domain B. However, linker scan analysis of several ARS elements
suggests that domain B is modular. ARSI contains 3 domain B elements,
B1, B2 and B3, in which linker substitutions reduce ARS activity
(Marahrens and Stillman 1992). The presence of any 2 of these 3 ele-
ments is sufficient for ARS activity. ARS307 contains 2 domain B ele-
ments (Rao et al. 1994; Theis and Newlon 1994), and a similar pattern of
elements is apparent in the linker scan analysis of 3 ARS elements from
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chromosome VI, ARS605, ARS607, and ARS609 (Rashid et al. 1994).
Although the B elements of ARS307 share little or no sequence homol-
ogy with the B elements of ARSI, the Bl elements of the 2 ARSs are
functionally interchangeable, as are the B2 elements (Rao et al. 1994).
As described below, the B1 and B3 elements function as protein-binding
sites, but the function of the B2 element is unclear.

A saturation mutagenesis of the B1 element of ARSI revealed that
point mutations in either of two adjacent base pairs caused dramatic
decreases in plasmid stability (Rao et al. 1994). The B1 element of
ARS307 contains a pair of identical base pairs at a similar distance from
the ACS which are important for B1 function (Rao et al. 1994; Theis and
Newlon 1994). This region of the B1 element is important for ORC bind-
ing, both in vitro and in vivo (Rao and Stillman 1995; Rowley et al.
1995). Interestingly, the analysis of point mutations in the B1 element of
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ARS]1 revealed that mutations in only one of the two nucleotides with sig-
nificant effects on B1 function reduced ORC binding, suggesting that
this element has other functions in replication initiation beyond its role in
ORC-DNA interactions (Rao and Stillman 1995).

The B3 element of ARSI is the binding site for the multifunctional
transcription and replication protein, ARS-binding factor 1 (Abflp, also
called OBF1; see ARS-binding factors below). Abflp binding sites are
found in some but not all ARS elements, where they function in a
position- and orientation-independent fashion as replication enhancers
(Walker et al. 1990, 1991). The B3 element of ARSI can be replaced by
binding sites for other transcription factors, Gal4p and Rap1p, suggesting
that other transcriptional activators might serve as replication enhancers
(Marahrens and Stillman 1992).

The role(s) of the B2 element is not yet clearly defined. Although 8-
bp linker substitutions in the B2 elements of ARSI and ARS307 affected
ARS activity, single base-pair changes in the B2 element of ARSI
showed no phenotype (Marahrens and Stillman 1992; Rao et al. 1994;

Figure 1 ARS structure. (@) Schematic drawings of three S. cerevisiae ARS ele-
ments. Boxes represent functional elements identified by mutational analysis.
The essential ACS of each ARS element is represented by the filled box within
domain A. The domain A and domain B elements of ARS7 were defined by
Marahrens and Stillman (1992) and domain C by Strich et al. (1986). ARS307
was dissected by Palzkill and Newlon (1988), Van Houten and Newlon (1990),
Theis and Newlon (1994), and Rao et al. (1994). The ARS12] diagram is based
on data from Walker et al. (1991). The core region of ARSI21, identified by
deletion analysis, contains the essential ACS and, presumably, the B1 element.
The AT-rich region (ATR) stimulates the activity of the core, and by analogy
with ARS1 and ARS307, is likely to contain the B2 element. (b) Cell-cycle-
regulated protein interactions with ARS/. Diagram is based on data from Diffley
et al. (1994) and Cocker et al. (1996). ORC, shown as a six-subunit protein, and
Abflp, shown as a monomer, are bound throughout the cell cycle. Origin activa-
tion appears to be a two-step process. In the first step, at the end of mitosis, ad-
ditional factors are recruited to ARS7 to form the prereplicative complex (pre-
RC). The assembly and maintenance of the pre-RC depends on Cdc6p, which is
likely to be a component of the pre-RC. In the second step, at the transition from
G, to S phase, the pre-RC is activated (indicated by an asterisk) and replication
initiates. Activation of the pre-RC requires the activity of two protein kinases
(Cdc7p and Cdc28p) and their regulatory subunits (Dbf4p and a B-type cyclin).
During S phase, the additional factors that form the pre-RC are dissociated
and/or degraded. The factor shown interacting with the B2 element is hypotheti-
cal (see text).
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Theis and Newlon 1994). These observations are consistent with a role
for B2 as a structural element or as a protein-binding site with loose se-
quence specificity. One attractive hypothesis is that B2 functions as a
DNA unwinding element (DUE). In well-studied replication origins,
replication initiation is facilitated by the unwinding of a small region ad-
jacent to the initiator protein-binding site where the remainder of the
replication apparatus assembles (for review, see Kornberg and Baker
1992). The observed correlation between the progressive loss of ARS ac-
tivity and increases in helical stability caused by deletions into domain B,
and the demonstration that domain B can be functionally substituted by
heterologous, easily unwound sequences, support the idea that a DUE is
contained within domain B (Umek and Kowalski 1988; Natale et al.
1992). However, two lines of evidence suggest that B2 has a function
beyond acting as a DUE. First, some linker scan mutations in B2 that
reduce plasmid stability are not predicted to affect the helical stability of
domain B (Theis and Newlon 1994). Second, mutations in B2 reduce the
ability of ARSI to recruit Dbf4p (see below), suggesting that Dbf4p inter-
acts directly or indirectly with B2 (Dowell et al. 1994).

Fewer than half of the ARS elements characterized have stimulatory
sequences in domain C. The Abflp binding sites in ARS121 are the only
well-studied domain C elements (Walker et al. 1990, 1991). The domain
C sequences of ARS! are located approximately 200 bp from domain A
and are not well characterized (Strich et al. 1986). Five of the nine
chromosome VI ARS elements have been reported to have stimulatory
sequences in domain C, but only in ARS605 has the position of these se-
quences been defined (Shirahige et al. 1993; Rashid et al. 1994).

S. pombe ARS elements have not been studied as extensively as those
of S. cerevisiae. An 11-bp consensus sequence, the PACS, was found by
the comparison of the DNA sequences of nine ARS-containing frag-
ments (Maundrell et al. 1988). However, unlike the S. cerevisiae ACS,
this sequence does not appear to play an essential role in ARS function
(Maundrell et al. 1988; Zhu et al. 1994). Both the sizes of S. pombe
ARS-containing fragments and deletion analysis of two S. pombe ARS
elements, ARS3002 and ARS3003, suggest that the sequences required
for full ARS activity are approximately ten times the length of S.
cerevisiae ARS elements (Maundrell at al. 1988; Zhu et al. 1994). As in
S. cerevisiae, S. pombe ARS elements clearly function as replication
origins on plasmids (Caddle and Calos 1994; Wohlgemuth et al. 1994).

ARS elements have also been identified in chromosomal DNA of
Kluyveromyces lactis (Fabiani et al. 1990). The detailed analysis of one
of these ARSs revealed an essential core of approximately 40 bp, con-
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taining a sequence related to the ACS of S. cerevisiae, and flanked by se-
quences that stimulate activity (Fabiani et al. 1996).

Chromosomal Replication Origins

All S. cerevisiae chromosomal replication origins, identified by 2D gel
analysis, coincide with known ARS elements. Moreover, no additional
origins were found in systematic searches for origins of replication not
associated with ARS elements on chromosome III (Greenfeder and
Newlon 1992; Huberman et al. 1992; Collins and Newlon 1994). The
well-documented finding that the effects of mutations that reduce or
abolish ARS activity on plasmids have corresponding effects on
chromosomal origin activity demonstrates directly that ARS elements are
the cis-acting sequences required for chromosomal replication origin ac-
tivity (Deshpande and Newlon 1992; Rivier and Rine 1992; Huang and
Kowalski 1993; Marahrens and Stillman 1994; Theis and Newlon 1994).
Similarly, the deletion of ARS elements from near the ura4 locus of S.
pombe was found to inactivate replication initiation events in their vicini-
ty (Dubey et al. 1994).

The issue of the exact location relative to ARS elements of the actual
replication initiation sites, i.e., the positions of leading-strand and
lagging-strand primers, is not clearly resolved. If the B2 element is ac-
tually a DUE, then initiations would be expected to occur in and around
B2. The accuracy of 2D gel origin mapping techniques is sufficient only
to place initiation sites within a few hundred base pairs of ARS elements.
Preliminary data suggest that the 5’ ends of leading strands map primari-
ly to domain B of ARS307 (S. Jenab and C.S. Newlon, in prep.).

ARS-binding Proteins

The activity of ARS elements as chromosomal replicators is almost
certainly mediated by proteins that interact with them. Consistent with
this idea, positioning a nucleosome over the ACS of ARSI reduces plas-
mid stability, presumably by blocking access of other proteins to the
ARS element (Simpson 1990). The extreme sensitivity of the ACS to
point mutations makes it the best candidate binding site for an initiator
protein. After more than 10 years of effort in several laboratories, the
multisubunit ORC that binds to the ACS was identified 3 years ago (Bell
and Stillman 1992). The second DNA-binding protein that interacts with
ARS elements, Abf1p, binds to the B3 element.
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ORC

Initially identified by DNA {footprinting assays on fractionated S.
cerevisiae nuclear extracts, this protein with subunits of 120, 72, 62, 56,
53, and 50 kD requires ATP for DNA binding (Bell and Stillman 1992).
It has been estimated that there are approximately 600 copies of Orc2p
per cell (Rowley et al. 1995), which translates to approximately one
ORC per replication origin. The ORC footprint includes domain A and
extends into domain B of several ARS elements. The features of the foot-
print include protection of the domain A sequence and a strong hyper-
sensitive site in element B1, with additional hypersensitive sites at ap-
proximately 10-bp intervals extending toward the B2 element (Bell and
Stillman 1992; Bell et al. 1993; Micklem et al. 1993). The observed dis-
ruption of ORC binding by mutations in the ACS that abolish replicator
activity and the reduction in the efficiency of ORC binding by mutations
in B1 demonstrate the biological significance of the ORC/DNA interac-
tion (Bell and Stillman 1992; Rao and Stillman 1995; Rowley et al.
1995). The similarity of the genomic footprint of proteins bound to ARSI
and the 2 um ARS in permeabilized cells to the in vitro footprint of
purified ORC adds further support to the idea that ORC binds to replica~
tion origins in vivo (Diffley and Cocker 1992; Diffley et al. 1994). The
pattern of DNase I hypersensitive sites and the sensitivity of domain B to
copper-phenanthroline cleavage suggest that the DNA of domain B is
wrapped on the ORC protein surface and is under torsional stress (Dif-
fley and Cocker 1992).

Genetic analysis of ORC mutants has provided both additional sup-
port for the function of ORC in the initiation of DNA replication and evi-
dence that ORC is involved in the transcriptional silencing of the silent
mating loci. ORC6 was identified in a screen for proteins that interact
with the ACS and shows genetic interactions with several proteins impli-
cated in the initiation of replication (Li and Herskowitz 1993; see below).
Mutations in ORC2 (Foss et al. 1993; Micklem et al. 1993) and ORCS
(Loo et al. 1995) cause a plasmid maintenance defect that can be sup-
pressed by additional replication origins, and ts orc2 mutants are defec-
tive in the G¢/S transition at the nonpermissive temperature (Bell et al.
1993). Moreover, the efficiency of initiation at chromosomal replication
origins, determined by 2D gel analysis, is reduced in orc2 and orc5
mutants at the permissive temperature and is further reduced at the non-
permissive temperature (Fox et al. 1995; Liang et al. 1995).

A role for ORC in transcriptional silencing was made obvious by the
isolation of the orc2 and orc5 mutants discussed above in screens that
made use of the HMR FE silencer element that participates in the tran-
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scriptional repression (silencing) of the HMR locus (Foss et al. 1993;
Micklem et al. 1993; Loo et al. 1995). One of the three cis-acting se-
quences required for the function of this silencer is an ACS, and the si-
lencer is active as a chromosomal replication origin (Rivier and Rine
1992). In addition to their defects in DNA replication, these Orc~
mutants are defective in transcriptional silencing. Two lines of evidence
suggest that the roles of ORC in DNA replication and silencing are inde-
pendent. First, the HMR E silencer can be functionally replaced by Gal4p
DNA-binding sites when a hybrid Sirlp-Gal4p DNA-binding domain
protein is expressed (Chien et al. 1993). This observation suggests that
the role of ORC and other silencer-binding proteins may be to recruit
Sirlp to the silencer. Second, alleles of ORC5 have been isolated that are
proficient for DNA replication but defective in silencing (Fox et al.
1995).

Aside from its DNA-binding activity, no biochemical activities have
been attributed to ORC. ATP or an ATP analog with a hydrolyzable B-y
bond is required for DNA binding by ORC, suggesting that ATP hydro-
lysis might be required (Bell and Stillman 1992). However, no ATPase
activity has been identified. SV40 T antigen and E. coli DnaA protein
both require ATP for untwisting DNA (Bramhill and Kornberg 1988;
Borowiec et al. 1990). Orc5p has a predicted guanine nucleotide-binding
site, but mutation of a highly conserved lysine that alters ATP binding or
hydrolysis by other proteins with a similar binding site was not lethal
(Loo et al. 1995). The mutant strain did exhibit slow growth at elevated
temperatures, suggesting that the putative ATP-binding motif plays a role
in Orc5p function.

ARS-binding Factor 1

Abflp was identified in several laboratories on the basis of its binding to
ARS elements, transcriptional silencers, or promoters (for review, see
Campbell and Newlon 1991). In ARS] it interacts with the B3 element to
stimulate replicator activity (Diffley and Stillman 1988; Marahrens and
Stillman 1992), and it has been shown to function as a replication en-
hancer at ARS121 (Walker et al. 1990). Not all ARS elements have
Abflp binding sites. Binding sites for this protein have also been demon-
strated to function in transcriptional activation, transcriptional repression,
and plasmid segregation (for review, see Campbell and Newlon 1991).
The observations that abfl mutants show defects in plasmid maintenance
(Rhode et al. 1992) and that genomic footprints of the B3 element of
ARSI look similar to footprints with purified Abflp in vitro (Diffley and
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Cocker 1992; Rowley et al. 1995) strongly suggest that Abflp interacts
with ARS elements in vivo.

It is not clear how Abflp enhances replicator activity. Its binding
could have a direct role, for example, by inducing a conformational
change in the ARS element or by interacting with another component of
the replication apparatus. The observation that the mutations in element
B3 of ARSI have no effect on ORC binding in vitro or in vivo indicates
that Abflp is unlikely to interact with ORC (Rao and Stillman 1995;
Rowley et al. 1995). The possibility that RP-A is a target is suggested by
the observation that the Gal4p and VP16 transcription factors interact
with RP-A in vitro (He et al. 1993; Li and Botchan 1993). Consistent
with this idea, mutations in the B3 element of ARSI appear to affect a
late step in replicator activation, acting after the assembly of the
prereplicative complex discussed below (Rowley et al. 1995). Alterna-
tively, Abflp could play an indirect role.

Other Proteins?

Using ARSI21 as a target, Eisenberg and colleagues have sought ARS-
binding proteins. In addition to Abflp (Eisenberg. et al. 1988; Frances-
coni and Eisenberg 1991), two additional factors have been identified
that are required for the formation of a maximally retarded ARS121 com-
plex in gel shift assays (Estes et al. 1992). OBF2 interacts with Abflp
and DNA to form a complex of intermediate mobility. In the presence of
ATP, this complex is then competent to bind the third factor, core bind-
ing factor (CBF). The requirement of ATP and an ACS for the binding of
CBF to ARS121 suggests that CBF may be the same as ORC. However,
in contrast to the reported properties of CBF, the binding of ORC to
DNA does not require Abflp (Rao and Stillman 1995; Rowley et al.
1995).

The B2 element is also a potential protein-binding site. The lack of
DNA sequence conservation in this region of ARS elements, and the in-
sensitivity of the B2 element of ARSI to point mutations, suggest that
any proteins binding to B2 should have little sequence specificity. How-
ever, interaction with ORC could provide the specificity needed to
recruit such a protein to replicators.

Other Proteins Required for Replication Initiation

The clarity of the ORC genomic footprint in cells from asynchronous
cultures indicated that ORC is bound to replicators throughout most of
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the cell cycle (Diffley and Cocker 1992), suggesting that replication ini-
tiation is unlikely to be mediated by the cell-cycle-regulated assembly of
ORC at replication origins. It is possible that ORC activity is regulated
by a cell-cycle-dependent modification. The presence of potential cyclin-
dependent kinase phosphorylation sites in Orc2p and Orc6p (Li and Her-
skowitz 1993; Micklem et al. 1993) and the recent demonstration that B-
type cyclins encoded by CLB5 and CLB6 normally trigger S phase (Ep-
stein and Cross 1992; Schwob and Nasmyth 1993; Schwob et al. 1994;
see Nasmyth, this volume) suggest one attractive model for the regula-
tion of ORC activity.

Alternatively, one or more additional proteins may interact with ORC
to regulate its activity. Evidence in support of this possibility is provided
by the observation that the genomic footprints at ARSI and the 2 pm
ARS change as a function of the cell cycle (Diffley et al. 1994). The
footprints during S, G,, and early M resemble the footprints generated by
purified ORC and Abflp in vitro. Beginning at anaphase and continuing
through G;, an additional region of protection appears that overlaps the
ORC footprint and extends well into the B2 element, suggesting that ad-
ditional protein(s) assembles on replicators at mitosis and remains there
until S phase is triggered. The kinetics of appearance and disappearance
of this prereplicative complex fit very well with observed properties of
"licensing factor" in Xenopus and the presence of an S-phase-promoting
factor deduced from mammalian cell fusion experiments (for review, see
Su et al. 1995).

Excellent candidates for proteins that regulate the initiation of replica-
tion and models for how they work have recently emerged from studies
of gene products identified by several genetic screens designed to target
replication proteins,

CDC7 and DBF4

CDC7 encodes a 58-kD protein kinase having homology with cyclin-
dependent protein kinases (Patterson et al. 1986). Although its target(s)
has not been identified, Cdc7p is capable of phosphorylating both itself
and histone H1 in vitro. It is required for several aspects of DNA metab-
olism, including mitotic DNA replication, meiotic DNA recombination,
and replication-dependent DNA repair (for review, see Sclafani and
Jackson 1994). Cdc7p appears to act just at the G;/S boundary in mitotic
cells, after completion of the protein synthesis required for DNA replica-
tion but before replication intermediates are produced (Hereford and
Hartwell 1974; Petes and Newlon 1974). Although the level of Cdc7p is
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constant, its kinase activity is regulated during the cell cycle and peaks at
the G1/S boundary (Jackson et al. 1993; Yoon et al. 1993).

Both genetic and biochemical data suggest that Cdc7p interacts with
the product of the DBF4/DNAS52 gene, mutations in which cause a cell-
cycle arrest similar to cdc7 (Johnston and Thomas 1982a,b; Soloman et
al. 1992). DBF4 acts as a multicopy suppressor of cdc7, and vice versa,
and the cdc7dbf4 double mutant is inviable (Kitada et al. 1992). Cdc7p
kinase activity is reduced in dbf4 mutants, and Dbf4p and Cdc7p physi-
cally interact (Kitada et al. 1992; Jackson et al. 1993; Dowell et al.
1994). In contrast to CDC7, DBF4 is periodically expressed, with mRNA
levels peaking at the G;/S boundary (Chapman and Johnston 1989).
These observations suggest that Cdc7p kinase activity could be activated
by association with Dbf4p in a manner similar to the activation of the
Cdc28p kinase by association with cyclins.

The interaction of the Cdc7p kinase with Dbf4p is of particular inter-
est because Dbf4p has recently been shown to interact with ARS ele-
ments (Dowell et al. 1994). The latter interaction was found in a "one-
hybrid" genetic screen for hybrid proteins fused to the Gal4p activation
domain capable of activating transcription of a reporter gene placed
downstream from an ARS element. The recruitment of Dbf4p to ARSI
requires domain A and is reduced by mutations in B1 and B2 but not B3,
suggesting that Dbf4p interacts either directly or indirectly with ORC.
The domain of Dbf4p that interacts with ARS elements is separable from
the domain that interacts with Cdc7p, indicating that Dbf4p is likely to
recruit Cdc7p to replication origins. Taken together, these observations
suggest that the target of the Cdc7p kinase is a protein in prereplicative
complexes whose phosphorylation may trigger the initiation of replica-
tion.

A CDC7 homolog has recently been identified in S. pombe, and
named hskl* (Masai et al. 1995). Disruption of the gene is lethal, and
analysis of germinating spores carrying the disruption suggests that DNA
replication is inhibited. Moreover, a fraction of these spores undergo an
aberrant mitosis, suggesting either that Hsk1p is required for inhibiting
mitosis until S phase is completed or that it has an additional role in the
proper execution of mitosis. The isolation of conditional alleles of Askl
should help to resolve this issue.

CDCo6

Cdc6p was initially implicated in the initiation of DNA replication by
two observations. First, early reciprocal shift experiments suggested that
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its function was required for an early event in DNA replication, prior to
the hydroxyurea-sensitive step (Hartwell 1976). Second, cdc6 mutants
exhibit a plasmid maintenance defect that can be suppressed by the inclu-
sion of multiple ARS elements on the plasmid (Hogan and Koshland
1992). Recently, 2D gel analysis has been used to demonstrate directly
that replication initiation at chromosomal origins is inefficient in cdc6
mutants at the permissive temperature, and that the defect is more pro-
nounced after a short time at the nonpermissive temperature (Liang et al.
1995). The inefficient initiation of replication observed in a ts cdc6 strain
is likely to result from partial function of the mutant protein, because the
depletion of Cdc6p results in a strikingly different phenotype. In this
case, both S. pombe strains depleted of Cdc18p and S. cerevisiae strains
depleted of Cdc6p undergo a transient arrest at the G;/S boundary, and
then undergo an aberrant mitosis in the absence of DNA replication that
results in cell death (Kelly et al. 1993; Piatti et al. 1995). Therefore, it is
likely that Cdc6p and its S. pombe homolog Cdc18p are required both for
the initiation of DNA replication and to delay mitosis until S phase is
completed.

Genetic interactions between CDC6 and ORC6 (Li and Herskowitz
1993), the synthetic lethality of cdc6 and orc5 or orc6, and the identifica-
tion of CDC6 as a multicopy suppressor of orc5-1 (Liang et al. 1995)
suggested that Cdc6p might interact with ORC. Although the physical in-
teraction of ORC with Cdc6p has not been directly demonstrated in yeast
cells, the observation that Cdc6p expressed in insect cells could be im-
munoprecipitated by monoclonal antibodies against ORC following addi-
tion of purified ORC to the insect cell extracts provides biochemical evi-
dence that the proteins interact (Liang et al. 1995).

CDC6 is expressed periodically during the cell cycle, primarily dur-
ing late mitosis, but with a second burst of synthesis late during G,
(Zhou and Jong 1990; Bueno and Russell 1992; Zwerschke et al. 1994;
Piatti et al. 1995). Constitutive expression of CDC6 at high levels causes
a delay in entry into mitosis, indicating that the periodic expression pat-
tern is important for normal function (Bueno and Russell 1992). The
mitotic delay is not seen if CDC6 is overexpressed by placing the gene
under the control of its own promoter on a high copy plasmid, implying
that Cdc6p either is unstable or is specifically degraded at some point in
S or G, phase. Recent analysis using epitope-tagged Cdc6p has demon-
strated that Cdc6p is unstable and disappears soon after the beginning of
S phase (Piatti et al. 1995).

The timing of its expression and its interaction with ORC suggest that
Cdc6p could be a component of, or required for, the assembly of the pre-
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replicative complex assembled at replication origins. The finding that a
cdc6 mutant gives a postreplicative footprint at the nonpermissive tem-
perature is consistent with this idea (Diffley et al. 1994), which is further
supported by the observation that depletion of wild-type Cdc6p causes a
defect in the formation and maintenance of the prereplicative complex
(Cocker et al. 1996). The biochemical function of Cdc6p is unclear. It is
predicted to be a 58-kD protein with a purine nucleotide-binding site
(Zhou et al. 1989), and it has been reported to bind and hydrolyze ATP
and GTP in a DNA-independent reaction (Zwerschke et al. 1994).

MCM Proteins

Genetic screens for mutations that influence plasmid stability have iden-
tified a number of candidates for proteins that function in the initiation of
DNA replication (for review, see Campbell and Newlon 1991). Those
most clearly implicated are a subset of the minichromosome maintenance
(mcm) mutants that decrease the stability of plasmids carrying different
ARS elements to varying extents (Maine et al. 1984; Gibson et al. 1987).
These ARS-specific mutants identified a family of genes encoding re-
lated proteins and a gene encoding a transcription factor, Mcm1p.

The family of related proteins now includes the products of five S.
cerevisiae genes, MCM2, MCM3, CDC46/MCMS5, CDC47, and CDC54
(Hennessy et al. 1990; Yan et al. 1991; Chen et al. 1992; Dalton and
Whitbread 1995; Whitbread and Dalton 1995), as well as homologs from
S. pombe (Coxon et al. 1992; Miyake et al. 1993), Xenopus (Coxon et al.
1992; Kubota et al. 1995), and a number of other eukaryotes (for review,
see Su et al. 1995). In S. cerevisiae each of the five genes encoding
members of this family is essential, suggesting that their functions are
not completely overlapping. However, genetic interactions, both high
copy suppression and synthetic lethality, suggest that the gene products
interact with each other (Gibson et al. 1990; Hennessy et al. 1991; Yan et
al. 1991) and with ORC (Li and Herskowitz 1993; Liang et al. 1995; Loo
et al. 1995).

Several lines of evidence implicate these gene products in DNA
replication. In addition to the ARS-specific plasmid maintenance defect,
the mutants show hyperrecombination and chromosome loss phenotypes
characteristic of DNA replication mutants (Sinha et al. 1986; Yan et al.
1991; Chen et al. 1992). More direct evidence includes the observations
that ARSI is used inefficiently as a replication origin even at the permis-
sive temperature in mem2 and mcm3 mutants (Yan et al. 1993) and that
cdc46 mutants accumulate chromosomal DNA molecules that are unable
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to enter pulsed-field gels, almost certainly because they are partially
replicated (Hennessy et al. 1991). The intracellular localization of these
proteins changes in an interesting fashion as well. They accumulate in
the cytoplasm during S and G, and enter the nucleus at mitosis, remain-
ing there until the G;/S boundary, when they are either degraded or be-
come cytoplasmic again (Hennessy et al. 1990; Yan et al. 1993; Dalton
and Whitbread 1995).

The predicted -amino acid sequence of these proteins places them in a
superfamily of ATPases that includes the replication initiator proteins E.
coli DnaA and SV40 T antigen (Koonin 1993). However, none of these
proteins has yet been demonstrated to have ATPase or any other
biochemical activity. These proteins are also relatively abundant, making
it unlikely that they interact only with replicators.

MCM]1 is an essential gene that encodes a transcription factor having
homology with human serum response factor (Norman et al. 1988;
Passmore et al. 1988, 1989). Mcmlp interacts with at least four other
regulatory proteins and possibly also independently to modulate the tran-
scription of diverse genes including cell-type-specific genes and Ty ele-
ments (for review, see Kuo and Grayhack 1994). Mcmlp is also impli-
cated in DNA replication by its plasmid maintenance defect and its
chromosome loss and hyperrecombination phenotypes (Elble and Tye
1992). Moreover, a ts mcml mutant causes the temperature-dependent
accumulation of large budded cells with single nuclei and partially repli-
cated genomes, a phenotype shared with many DNA replication mutants.
How the effects of Mcmlp on DNA replication are mediated is not
known. One possibility is that it binds to ARS elements, perhaps by in-
teraction with other ARS-binding proteins. Alternatively, it may be re-
quired for the expression of one or more proteins required for DNA
replication.

Determinants of Origin Use

Whereas ARS elements clearly function as chromosomal replicators,
their efficiency of use is highly variable, ranging from initiating replica-
tion in every cell cycle to initiating at an undetectable frequency (Brewer
and Fangman 1988; Linskens and Huberman 1988; Dubey et al. 1991;
Greenfeder and Newlon 1992; Newlon et al. 1993). As described above,
mutations in ARS elements and the trans-acting factors that interact with
them reduce the efficiency with which chromosomal replicators are used.
However, the observation that chromosomal replicator efficiency does
not correlate with ARS efficiency, measured by plasmid stability, sug-
gests that some aspect of the chromosomal environment beyond the cis-
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acting sequences intrinsic to ARS elements influences replicator activity.
These "chromosomal context" effects can increase or decrease
chromosomal replicator efficiency relative to the efficiency of the same
replicator in plasmids. For example, ARS307 functions relatively ineffi-
ciently in plasmids (Palzkill and Newlon 1988; Van Houten and Newlon
1990; Theis and Newlon 1994) but initiates replicaticn in virtually every
cell cycle in the chromosome (Deshpande and Newlon 1992; Greenfeder
and Newlon 1992). In contrast, ARS301 is an efficient plasmid replicator,
but is inactive as a chromosomal replicator (Dubey et al. 1991).

One clear example of the influence of chromosomal context on
replicator activity is the phenomenon called origin interference. The
basic observation is that placement of efficient replicators close to each
other in a chromosome or in a plasmid creates a situation in which
replication initiates at only one of the closely spaced replicators in any
particular cell cycle. Thus, when ARSI was inserted 6.5 kb away from
ARS501 on chromosome V, replication initiated at either ARSI or
ARSS501 in any given cell, but not at both. A similar result was found for
three copies of ARSI at the normal position of ARSI on chromosome IV;
again, replication initiated at only one copy of ARSI in any particular
cell, but all three copies were used in the population (Brewer and Fang-
man 1993). A strikingly different result was obtained with a construct
containing two copies of ARS! at its normal position on chromosome IV
(Marahrens and Stillman 1994). In this case, only one of the copies of
ARS1 was used in the population, and the second copy remained silent.
An inactivating point mutation in the ACS of the dominant copy of ARSI
caused the second copy to become active. Origin interference has also
been observed in plasmids. From the pattern of plasmid replication inter-
mediates, it had been inferred that only a single replicator was active in
multimeric plasmids from yeast (Brewer and Fangman 1987), mam-
malian cells (Schvartzman et al. 1990), and E. coli (Martin-Parras et al.
1992). However, only recently has a plasmid in which the two ARS ele-
ments could be distinguished been studied (Brewer and Fangman 1994).
In this case, only one of the two equally spaced copies of ARSI was used
on any given plasmid, with one copy used approximately four times
more frequently than the other. The sequences that establish replicator
preference were mapped to the URA3 gene on the plasmid. Thus, it ap-
pears that an active replicator can somehow suppress the activity of
nearby replicators and that the selection of the active replicator is in-
fluenced by local context.

The mechanism of origin interference has not been established. It is
possible that an active replicator actually inhibits initiation at a nearby
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replicator, perhaps by steric hindrance of the formation of a second ini-
tiation complex by the first or by transmission of some sort of topologi-
cal signal along the DNA molecule. Alternatively, the apparent inhibition
could simply reflect slight differences in the timing of initiation. In this
case, a fork from the origin that was activated first would replicate the
second replicator before it was activated. Once the fork had passed, ac-
tivation of the second replicator would be prevented by the mechanism
that ensures that each chromosome is replicated once and only once per S
phase.

The extent to which origin interference can account for the inefficient
use of some chromosomal replicators and the apparent inactivation of
others is not certain. However, the available information suggests that
other mechanisms must exist. ARS308, which functions inefficiently in
the chromosome, initiating replication in only 10-15% of cell cycles, is
not activated by deletion of an efficient replicator (ARS307) located ap-
proximately 5 kb away (Greenfeder and Newlon 1992). Moreover, five
inactive ARS elements on the left end of chromosome III are not ac-
tivated by deletion of all active replicators from the adjacent 200-kb
region of the chromosome, demonstrating that they must be inactivated
by a mechanism other than origin interference (A. Dershowitz and C.S.
Newlon, in prep.). Another important question is the distance over which
origin interference can act. The average distance between active
replicators in S. cerevisiae chromosomes is approximately 40 kb. The
distances over which origin interference has been observed do not exceed
6.5 kb.

The active and inactive replicators on chromosome III are not inter-
spersed but, rather, are present in blocks. The left 40 kb of the
chromosome contains five inactive replicators, and two other inactive
replicators are present in a 20- to 30-kb region in the middle of the right
arm (Dubey et al. 1991; Newlon et al. 1993). This arrangement suggests
that the chromosome might be organized into domains, some of which
are permissive for replicator activity and some not. An attractive expla-
nation for the inactivity of replicators at the left end of the chromosome
was based on studies of transcriptional silencing by telomeres and by the
silencer elements associated with the silent mating-type loci in S.
cerevisiae. Mutations in a common set of approximately ten genes, in-
cluding the genes encoding the core histones and SIR2, SIR3, and SIR4,
are known to abrogate silencing by both telomeres and silencer elements
(for review, see Laurenson and Rine 1992). The SIRI gene product func-
tions at silencer elements but not at telomeres. The observation that
mutations in the genes encoding histones abrogate silencing suggests that
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silencing is mediated through the assembly of a repressive chromatin
structure. The presence of both a telomere and a silent mating-type locus,
HML, at or near the left end of chromosome III suggested that the puta-
tive repressive chromatin structure inactivated the replicators. Finding
that the replicators on the left end of chromosome III are not active in a
sirl or a sir4 mutant or in a circular derivative of the chromosome that
lacks telomeres (Dubey et al. 1991) demonstrates that it is unlikely that
replicator inactivation is mediated by telomeres or transcriptional silenc-
ers. The observation that an active replicator is associated with the HMR
locus on the right arm of chromosome III (Rivier and Rine 1992) is also
inconsistent with inactivation of replicators by silenced chromatin.

Another possibility is that the activity of replicators is influenced by
the physiological state of the cell. For example, it is clear that S.
cerevisiae diploids respond to nitrogen deprivation by undergoing
meiosis and sporulation. Several lines of evidence suggested that mitotic
S phase and premeiotic S phase were regulated differently, leading to the
idea that replicator use might be different in meiotic cells. However, ex-
amination of replication origin use on chromosome III revealed that the
same origins are used in meiotic S phase and mitotic S phase,
demonstrating that the inactive ARS elements at the left end of the
chromosome are not meiotic origins (Collins and Newlon 1994).

In the case of S. pombe, it is not yet clear to what extent chromosomal
replicator use varies. Replication bubble-containing replication interme-
diates have been found in chromosomal DNA fragments containing each
of several different ARS elements (Caddle and Calos 1994; Dubey et al.
1994; Wohlgemuth et al. 1994). In every case examined, the replication
intermediates included both Y-shaped molecules and bubble-containing
molecules of all sizes, suggesting that replication initiates inefficiently at
these replicators. In the single region that has been well-studied, it has
been shown that at least three separable ARS elements contribute to the
initiation events and that origin interference certainly contributes to the
inefficiency of use of individual replicators (Dubey et al. 1994).

In summary, it seems likely that some aspect of structure or context
influences chromosomal replicator activity in S. cerevisiae. The level at
which these effects are mediated is presently unclear. One possible
model suggests that cis-acting elements recruit activators or repressors
that interact with or prevent the formation of prereplicative complexes at
replicators. Other alternatives are that chromatin structure or chromo-
some organization within the nucleus functions as a mediator of these ef-
fects. A clear challenge for the future is to understand the mechanism(s)
of these controls.



Yeast DNA Replication 901

Temporal Control of Replication

It had been known for many years that there is a reproducible temporal
pattern of replication of mammalian chromosomes (see Simon and
Cedar, this volume). Because intact S. cerevisiae chromosomal DNAs
are about the size of domains of mammalian chromosomes whose
replication timing varies, and S phase is short, it was not clear whether
there would be a reproducible temporal pattern of replication in yeast
chromosomes. The earliest indication of a specific temporal order of
replication was given by experiments that made use of nitrosoguanidine,
a mutagen thought to act at the replication fork, to induce mutations in
synchronous cultures. The finding that different genes were susceptible
to mutation at different times suggested that they were replicated at dif-
ferent times (Burke and Fangman 1975; Sim and Haber 1975). Direct
measures of replication timing, either by the incorporation of radioactive
precursors into particular DNA molecules or by the use of density-shift
experiments, demonstrated that particular DNA fragments replicate at
reproducibly different times (Zakian et al. 1979; Brewer et al. 1980;
Fangman et al. 1983; McCarroll and Fangman 1988).

Do replicators initiate at different times, or do all replicators initiate
early and does replication timing simply reflect distance from an active
replicator? In a systematic examination of chromosome 111, it was found
that fragments containing ARS elements are replicated at different times
(Reynolds et al. 1989), and direct analysis of replication intermediates
isolated from synchronous cultures has confirmed that replication ini-
tiates at ARS305 and ARS306 5-10 minutes earlier than at ARS307 and
ARS309 (S. Jenab and C.S. Newlon, unpubl.). There is a 28-minute dif-
ference between the times of initiation at the earliest and latest origins
identified so far, suggesting that initiation events occur throughout most
of S phase (Brewer et al. 1993).

Initiation timing appears to be determined by sequences extrinsic to
ARS elements. This conclusion is based on experiments that made use of
ARSI, which initiates early in its usual location on chromosome 1V, and
ARS501, which initiates late in its usual position on chromosome V.
When a fragment containing ARSI was placed near ARS501 on
chromosome V, ARSI initiated late. In contrast, when a 14-kb fragment
containing ARS501 was cloned in a circular plasmid, ARS501 initiated
early (Ferguson et al. 1991; Ferguson and Fangman 1992). These obser-
vations rule out models in which different replicators are activated at dif-
ferent times because they have different affinities for an initiation factor
or because they are activated by different initiation factors that are
synthesized sequentially.
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Several observations suggest that late timing may be conferred by
telomere proximity. The early-replicating circular plasmid containing
ARS501 was turned into a late-replicating linear plasmid by the addition
of telomeres (Ferguson and Fangman 1992). The 2 pm plasmid ARS also
initiates 10-15 minutes later on a linear plasmid that in its normal con-
text in a circular plasmid (Wellinger et al. 1993). The presence of
telomeric repeats rather than linearity per se appears to be the
determinant of late replication, because a linear plasmid produced by the
introduction of a specific double-stranded break in vivo still replicates
early (Raghuraman et al. 1994).

Telomeres do not appear to be the only late-replication determinant.
The KEX2 ARS, which is the latest-initiating chromosomal replicator dis-
covered so far, is more than 200 kb from the nearest telomere. Moreover,
a 16-kb fragment containing this ARS causes a circular plasmid to repli-
cate late. Therefore, a late-timing determinant must reside within this
fragment, perhaps within the ARS itself (Brewer et al. 1993).

The studies described above demonstrate that late-replicating regions
of yeast chromosomes arise in two ways. The region can be far from an
early replicator, as is the case for the latest-replicating region of chromo-
some III, the left telomere (Reynolds et al. 1989). The left telomere is
replicated by a fork that initiates at ARS305, which is the earliest-
initiating replicator identified so far and is approximately 40 kb away
(Newlon et al. 1993). Alternatively, the region can contain its own late-
activated replicators, e.g., ARS501 and the KEX2 ARS.

Replication Termination

Replication intermediates containing converging replication forks char-
acteristic of replication termination can be distinguished by 2D gel analy-
sis from replication intermediates containing replication bubbles or
single forks. The available evidence suggests that replication termination
in S. cerevisiae occurs throughout broad regions rather than at specific
sites. Analysis of a 61-kb circular derivative of chromosome HI that con-
tains three ARS elements revealed three replication termination zones lo-
cated approximately midway between the three pairs of replicators
(Greenfeder and Newlon 1992). Altering the sites of replication initiation
by deletion of ARS307 from the circular chromosome created a new
termination region, demonstrating that termination is not controlled by
specific cis-acting sequences, but rather that termination regions are
determined by the positions of active replicators. Two other termination
zones have been examined. Replication termination intermediates were
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found over a broad region midway between ARS305 and ARS306 on
chromosome III (Zhu et al. 1992). The termination zone centromere-
proximal to ARS501 is so broad that termination intermediates associated
with any particular restriction fragment were too faint to be seen in stan-
dard 2D gel analysis. Instead, the termination zone was identified by a
gradual shift in the direction of replication fork movement through the
region (Brewer et al. 1993). The excellent stability of chromosomes from
which active replicators were deleted provides additional evidence
against the existence of specific replication termini (Dershowitz and
Newlon 1993; Huang and Kowalski 1993; Newlon et al. 1993). The exis-
tence of specific replication termini should prevent the replication of a
region from which all origins were deleted and cause decreased
chromosome stability.
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